Prostate cancer is the second most common cancer in men worldwide, with a wide spectrum of biologic behavior ranging from indolent low-risk disease to highly aggressive castration-resistant prostate cancer. Conventional imaging with computed tomography, magnetic resonance imaging, and bone scintigraphy is limited for the detection of nodal disease and distant bone metastases. In addition, advances in the available therapeutic options, both localized and systemic, drive the requirement for precise diagnostic and prognostic tools to refine the individual therapeutic approach at various times in the management of patients with prostate cancer. Positron emission tomography (PET) has a rapidly evolving role in the assessment of prostate cancer, particularly in the scenario of biochemical relapse. Fluorine 18 ((18)F) fluorodeoxyglucose, the most widely available PET tracer, has limitations, particularly in indolent prostate cancer. In the past decade, several PET tracers with specific molecular targets have reached the clinical domain. These tracers include (18)F-sodium fluoride, which is a bone-specific biomarker of osteoblastic activity; (18)F-choline and carbon 11-choline, which are directed at cell membrane metabolism; gallium 68-prostate-specific membrane antigen ligands; and, more recently, an amino acid analog, (18)F-fluciclovine (anti-1-amino-3-(18)F-fluorocyclobutane-1-carboxylic acid; also known as FACBC), which is also directed at cell membrane turnover. The mechanisms of actions of the clinically available PET tracers are reviewed, as well as their role in the imaging of prostate cancer with reference to relevant guidelines and the technical and imaging pearls and pitfalls of these tracers. (©)RSNA, 2017.
Radiographics : a review publication of the Radiological Society of North America, Inc. 2017 Aug 11 [Epub ahead of print]
Kathryn L Wallitt, Sairah R Khan, Suraiya Dubash, Henry H Tam, Sameer Khan, Tara D Barwick
From the Departments of Nuclear Medicine (K.L.W., S.D., H.H.T.) and Radiology (S.R.K., S.K., T.D.B.), Charing Cross Hospital, Imperial College Healthcare NHS Trust, Fulham Palace Road, London W6 8RF, England.