Physical activity is associated with improved disease progression and cancer-specific survival in patients with prostate cancer (PCa). However, the mechanisms underlying these associations remain unclear, while the relative impact of exercise modes is unknown. This study aims to examine the differential impact of exercise mode on tumour-suppressive skeletal muscle-associated systemic molecules as well as their delivery mechanism. This study will compare the effects of the two main exercise modes, aerobic and resistance, on (1) circulatory myokine levels, (2) skeletal muscle-induced extracellular vesicle abundance and cargo contents, and (3) uptake of extracellular vesicles (EVs) in PCa cells in patients with localised or advanced PCa.
A single-group cross-over design will be used for patients at opposite ends of the disease spectrum. A total of 32 patients (localised PCa, n = 16; metastatic castrate-resistant PCa, n = 16) will be recruited while capitalising on two ongoing studies. Ethics amendment has been approved for two ongoing trials to share data, implement the acute exercise sessions, and collect additional blood samples from patients. The patients will undertake two exercise sessions (aerobic only and resistance only) in random order one week apart. Blood will be collected before, after, and 30 min post-exercise. Circulating/EV-contained myokine levels (irisin, IL-6, IL-15, FGF-21, and SPARC) and plasma skeletal muscle-induced EVs will be measured using ELISA and flow cytometry. PCa cell line growth with or without collected plasma will be examined using PCa cell lines (LNCaP, DU-145, and PC-3), while evaluating cellular uptake of EVs. Ethics amendments have been approved for two capitalising studies to share data, implement acute exercise sessions and collect additional samples from the patients.
If findings show a differential impact of exercise mode on the establishment of an anti-cancer systemic environment, this will provide fundamental knowledge for developing targeted exercise prescriptions for patients with PCa across different disease stages. Findings will be reported in peer-reviewed publications and scientific conferences, in addition to working with national support groups to translate findings for the broader community.
The registration for the two capitalising studies are NCT02730338 and ACTRN12618000225213.
BMC cancer. 2024 Jul 01*** epublish ***
Jin-Soo Kim, Dennis R Taaffe, Daniel A Galvão, Timothy D Clay, Andrew D Redfern, Elin S Gray, Robert U Newton
Exercise Medicine Research Institute, Edith Cowan University, Joondalup, WA, Australia., Department of Medical Oncology, Fiona Stanley Hospital, Murdoch, WA, Australia., School of Medical and Health Sciences, Edith Cowan University, Joondalup, WA, Australia., Exercise Medicine Research Institute, Edith Cowan University, Joondalup, WA, Australia. .