Understanding the relationship between lesion-absorbed dose and tumor response in 177Lu-PSMA-617 radiopharmaceutical therapies (RPTs) remains complex. We aimed to investigate whether baseline lesion-absorbed dose can predict lesion-based responses and to explore the connection between lesion-absorbed dose and prostate-specific antigen (PSA) response. Methods: In this retrospective study, we evaluated 50 patients with 335 index lesions undergoing 177Lu-PSMA-617 RPT, who had dosimetry analysis performed on SPECT/CT at 24 h after cycles 1 and 2. First, we identified the index lesions for each patient and measured the lesion-based absorbed doses. Lesion-based response was calculated after cycle 2. Additionally, PSA50 response (a decline of 50% from baseline PSA) after cycle 2 was also calculated. The respective responses for mean and maximum absorbed doses and prostate-specific membrane antigen (PSMA) volumetric intensity product (VIP-PSMA) at cycles 1 and 2 were termed SPECTmean, SPECTmaximum, and SPECTVIP-PSMA, respectively. Results: Of the 50 patients reviewed, 46% achieved a PSA50 response after cycle 2. Of the 335 index lesions, 58% were osseous, 32% were lymph nodes, and 10% were soft-tissue metastatic lesions. The SPECT lesion-based responses were higher in PSA responders than in nonresponders (SPECTmean response of 46.8% ± 26.1% vs. 26.2% ± 24.5%, P = 0.007; SPECTmaximum response of 45% ± 25.1% vs. 19% ± 27.0%, P = 0.001; SPECTVIP-PSMA response of 49.2% ± 30.3% vs. 14% ± 34.7%, P = 0.0005). An association was observed between PSA response and SPECTVIP-PSMA response (R 2 = 0.40 and P < 0.0001). A limited relationship was found between baseline absorbed dose measured with a 24-h single time point and SPECT lesion-based response (R 2 = 0.05, P = 0.001, and R 2 = 0.03, P = 0.007, for mean and maximum absorbed doses, respectively). Conclusion: In this retrospective study, quantitative lesion-based response correlated with patient-level PSA response. We observed a limited relationship between baseline absorbed dose and lesion-based responses. Most of the variance in response remains unexplained solely by baseline absorbed dose. Establishment of a dose-response relationship in RPT with a single time point at 24 h presented some limitations.
Journal of nuclear medicine : official publication, Society of Nuclear Medicine. 2024 May 09 [Epub ahead of print]
Surekha Yadav, Fei Jiang, Sara Kurkowska, Rachelle Saelee, Amanda Morley, Felix Feng, Rahul Aggarwal, Courtney Lawhn-Heath, Carlos Uribe, Thomas A Hope
Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California., Department of Epidemiology and Biostatistics, University of California San Francisco, San Francisco, California., Department of Integrative Oncology, BC Cancer Research Institute, Vancouver, British Columbia, Canada., Department of Radiation Oncology, University of California San Francisco, San Francisco, California., Division of Hematology/Oncology, Department of Medicine, University of California San Francisco, San Francisco, California., Department of Radiology and Biomedical Imaging, University of California San Francisco, San Francisco, California; .