Androgen receptor (AR) signaling remains an important regulatory pathway in castrate-resistant prostate cancer, and its transcriptional downregulation could provide a new line of therapy.
A number of small-molecule ligands have previously demonstrated the ability to stabilize G-quadruplex structures and affect gene transcription for those genes whose promoters contain a quadruplex-forming sequence. Herein, we report the probable formation of new G-quadruplex structure present in the AR promoter in a transcriptionally important location. NMR spectroscopy, circular dichroism, UV spectroscopy, and UV thermal melting experiments for this sequence are consistent with G-quadruplex formation. Fluorescence resonance energy transfer (FRET) melting studies have identified a novel compound, MM45, which appears to stabilize this G-quadruplex at submicromolar concentrations. The effects of MM45 have been investigated in prostate cancer cell lines where it has been shown to inhibit cell growth. A reporter assay intended to isolate the effect of MM45 on the G-quadruplex sequence showed dose-dependent transcriptional repression only when the AR promoter G-quadruplex sequence is present. Dose-dependent transcriptional repression of the AR by MM45 has been demonstrated at both a protein and mRNA level. This proof of concept study paves the route toward a potential alternative treatment pathway in castrate-resistant prostate cancer.
Written by:
Mitchell T, Ramos-Montoya A, Di Antonio M, Murat P, Ohnmacht S, Micco M, Jurmeister S, Fryer L, Balasubramanian S, Neidle S, Neal DE. Are you the author?
CRUK Cambridge Research Institute, Li Ka Shing Centre, Robinson Way, Cambridge CB2 0RE, U.K.
Reference: Biochemistry. 2013 Feb 26;52(8):1429-36.
doi: 10.1021/bi301349c
PubMed Abstract
PMID: 23363071
UroToday.com Investigative Urology Section