On the feasibility of transperineal 3D ultrasound image guidance for robotic radical prostatectomy.

Prostate cancer is the most prevalent form of male-specific cancers. Robot-assisted laparoscopic radical prostatectomy (RALRP) using the da Vinci surgical robot has become the gold-standard treatment for organ-confined prostate cancer. To improve intraoperative visualization of anatomical structures, many groups have developed techniques integrating transrectal ultrasound (TRUS) into the surgical workflow. TRUS, however, is intrusive and does not provide real-time volumetric imaging.

We propose a proof-of-concept system offering an alternative noninvasive transperineal view of the prostate and surrounding structures using 3D ultrasound (US), allowing for full-volume imaging in any anatomical plane desired. The system aims to automatically track da Vinci surgical instruments and display a real-time US image registered to preoperative MRI. We evaluate the approach using a custom prostate phantom, an iU22 (Philips Healthcare, Bothell, WA) US machine with an xMATRIX X6-1 transducer, and a custom probe fixture. A novel registration method between the da Vinci kinematic frame and 3D US is presented. To evaluate the entire registration pipeline, we use a previously developed MRI to US deformable registration algorithm.

Our US calibration technique yielded a registration error of 0.84 mm, compared to 1.76 mm with existing methods. We evaluated overall system error with a prostate phantom, achieving a target registration error of 2.55 mm.

Transperineal imaging using 3D US is a promising approach for image guidance during RALRP. Preliminary results suggest this system is comparable to existing guidance systems using TRUS. With further development and testing, we believe our system has the potential to improve patient outcomes by imaging anatomical structures and prostate cancer in real time.

International journal of computer assisted radiology and surgery. 2019 Mar 13 [Epub ahead of print]

Prateek Mathur, Golnoosh Samei, Keith Tsang, Julio Lobo, Septimiu Salcudean

Department of Electrical and Computer Engineering, University of British Columbia, 2332 Main Mall, Vancouver, BC, V6T 1Z4, Canada. ., Department of Electrical and Computer Engineering, University of British Columbia, 2332 Main Mall, Vancouver, BC, V6T 1Z4, Canada.